Brief trains of action potentials enhance pyramidal neuron excitability via endocannabinoid-mediated suppression of inhibition.

نویسندگان

  • Dale A Fortin
  • Joseph Trettel
  • Eric S Levine
چکیده

Depolarization-induced suppression of inhibition (DSI) is a form of retrograde signaling at GABAergic synapses that is initiated by the calcium- and depolarization-dependent release of endocannabinoids from postsynaptic neurons. In the neocortex, pyramidal neurons (PNs) appear to use DSI as a mechanism for regulating somatic inhibition from a subpopulation of GABAergic inputs that express the type 1 cannabinoid receptor. Although postsynaptic control of afferent inhibition may directly influence the integrative properties of neocortical PNs, little is known about the patterns of activity that evoke endocannabinoid release and the impact such disinhibition may have on the excitability of PNs. Here we provide the first systematic survey of action potential (AP)-induced DSI in the neocortex. The magnitude and time course of DSI was directly related to the number and frequency of postsynaptic APs with significant suppression induced by a 20-Hz train containing as few as three APs. This AP-induced DSI was mediated by endocannabinoids as it was prevented by the cannabinoid receptor antagonist AM251 and potentiated by the endocannabinoid transport inhibitor AM404. We also explored the effects of endocannabinoid-mediated DSI on PN excitability. We found that single AP trains markedly increased PN responsiveness to excitatory synaptic inputs and promoted AP discharge by suppressing GABAergic inhibition. The time course of this effect paralleled DSI expression and was completely blocked by AM251. Taken together, our data suggest a role for endocannabinoids in regulating the output of cortical PNs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

A Major Role For Tonic GABAA Conductances In Anesthetic Suppression Of Intrinsic Neuronal Excitability

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABAA inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices. P...

متن کامل

Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability.

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABA(A) inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices....

متن کامل

Endocannabinoids Mediate Rapid Retrograde Signaling At Interneuron 3 Pyramidal Neuron Synapses of the Neocortex

Trettel, Joseph and Eric S. Levine. Endocannabinoids mediate rapid retrograde signaling at interneuron 3 pyramidal neuron synapses of the neocortex. J Neurophysiol 89: 2334–2338, 2003; 10.1152/jn.01037.2002. In the neocortex, inhibitory interneurons tightly regulate the firing patterns and integrative properties of pyramidal neurons (PNs). The endocannabinoid system of the neocortex may play an...

متن کامل

β-Amyloid Inhibits E-S Potentiation through Suppression of Cannabinoid Receptor 1-Dependent Synaptic Disinhibition

It has been widely reported that β-amyloid peptide (Aβ) blocks long-term potentiation (LTP) of hippocampal synapses. Here, we show evidence that Aβ more potently blocks the potentiation of excitatory postsynaptic potential (EPSP)-spike coupling (E-S potentiation). This occurs, not by direct effect on excitatory synapses or postsynaptic neurons, but rather through an indirect mechanism: reductio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2004